The inverse eigenvalue problem for symmetric quasi anti-bidiagonal matrices

نویسندگان

  • A. M. Nazari
  • Z. Beiranvand
چکیده

In this paper we construct the symmetric quasi anti-bidiagonal matrix that its eigenvalues are given, and show that the problem is also equivalent to the inverse eigenvalue problem for a certain symmetric tridiagonal matrix which has the same eigenvalues. Not only elements of the tridiagonal matrix come from quasi anti-bidiagonal matrix, but also the places of elements exchange based on some conditions. Our problem also to solve inverse eigenvalue problem for symmetric anti-bidiagonal matrix. AMS classification: 15A29; 15A18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The inverse eigenvalue problem for symmetric anti-bidiagonal matrices

X iv :m at h/ 05 05 09 5v 1 [ m at h. R A ] 5 M ay 2 00 5 The inverse eigenvalue problem for symmetric anti-bidiagonal matrices Olga Holtz Department of Mathematics University of California Berkeley, California 94720 USA March 6, 2008

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

An Accelerated Divide-and-Conquer Algorithm for the Bidiagonal SVD Problem

In this paper, aiming at solving the bidiagonal SVD problem, a classical divide-andconquer (DC) algorithm is modified, which needs to compute the SVD of broken arrow matrices by solving secular equations. The main cost of DC lies in the updating of singular vectors, which involves two matrix-matrix multiplications. We find that the singular vector matrices of a broken arrow matrix are Cauchy-li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2011